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Lattice-Gas Crystallization 
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This paper presents a new lattice-gas method for molecular dynamics modeling. 
A mean-field treatment is given and is applied to a linear stability analysis. 
Exact numerical simulations of the solid-phase crystallization are presented, as 
is a finite-temperature multiphase liquid-gas system. The lattice-gas method, a 
discrete dynamical method, is therefore capable of representing a variety of 
collective phenomena in multiple regimes from the hydrodynamic scale down to 
a molecular dynamics scale. 
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1. I N T R O D U C T I O N  

This paper presents a theory of  lattice-gas dynamics that includes interpar- 
ticle potentials. The microscopic lattice-gas dynamics is a highly discrete 
form of traditional molecular dynamics. All the usual dynamical quantities 
appearing in the traditional theory are discrete in the case of  a lattice gas. 
It is well known that in lattice gases these discrete quantities include space, 
time, and momentum.  Here the notion of  a discrete field is introduced and 
an analytical theory is presented to describe emergent macroscopic 
dynamics. The field concept is shown to be quite useful. In particular, the 
field concept is useful in describing our  novel lattice gas with multiple long- 
range interactions with different ranges and polarity. This new lattice gas 
possesses a liquid-solid transition and can be used as a new general 
method of  simulating molecular dynamics. The theoretical possibilities for 
such a lattice gas open the subject of exactly computable modeling to the 
areas of  dynamical solid-state systems. 
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It is known that interparticle potentials can be modeled by including 
a single anisotropic fixed-range interaction in the lattice-gas dynamics for 
discrete momentum exchange between particles. The simplest theoretical 
model of this kind is the Kadanoff-Swift-Ising model. (8~ An attractive 
fixed-range interaction was used in a lattice-gas automaton by Appert and 
Zaleski (-'~ in 1990 to model a nonthermal liquid-gas phase transition. The 
use of attractive and repulsive fixed-range interactions of this sort extended 
the lattice-gas dynamics to a finite-temperature liquid-gas transition where 
a complete pressure, density, and temperature equation of state is modeled, 
and the complete liquid-gas coexistence curve is analytically predicted 
through a Maxwell construction. (ls~ Our finite-temperature liquid-gas 
lattice gas is presented here for pedagogical reasons as well as to validate 
the theoretical method presented. Lattice-gas crystallization is introduced 
as a direct generalization of the finite-temperature liquid-gas lattice-gas 
model. 

This paper is organized in basically two parts. The first part of the 
paper up to and including Section 4 is familiar to the lattice-gas community 
and is given here as review material for the subject of lattice gases with 
purely local collisions. The rest of the paper presents new results, using a 
new theorem referred to here as the lattice multiple theorem, presented in 
Appendix A. This theorem is useful for determining the linear response of 
a lattice gas with long-range interactions. Appendix B describes in some 
detail an explicit numerical method for implementing the simplest of long- 
range interactions: the bounce-back and clockwise orbits. 

2. LATTICE-GAS A U T O M A T O N :  
AN EXACTLY C O M P U T A B L E  D Y N A M I C A L  SYSTEM 

A Boolean formulation of an exactly computable dynamical system, 
known as a lattice gas, may be stated in a way that is consistent with the 
Boltzmann equation for kinetic transport. In essence the lattice-gas 
dynamics is a simplified form of molecular transport, as we restrict our- 
selves to a discrete cellular phase pace. The macroscopic equations, in par- 
ticular the continuity equation and the Navier-Stokes equation, are 
obtained by ensemble averaging over a discrete microdynamical transport 
equation for number Boolean variables. The scheme employs the finite- 
point group symmetry of a crystallographic spatial lattice. It is somewhat 
inevitable that to obtain an exactly computable representation of fluid 
dynamics one must perform a statistical treatment over discrete number 
variables. 

Before introducing the basic lattice-gas microdynamical transport 
equation, let us give some notational conventions. We consider a spatial 
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lattice with N total  sites. The fundamental  unit  of length is the size of  a lat- 
tice cell l and the fundamental  unit of  time z is the time it takes for a speed- 
one particle to go from one lattice site to a nearest  neighboring site. Par-  
ticles with unit mass m propaga te  on the lattice. The unit lattice propaga-  
tion speed is denoted by c = l/z. Particles occupy this discrete space and 
can have only a finite number  B of possible momenta .  The lattice vectors 
are denoted by e~,-, where a = 1, 2 ..... B. For  example,  for a single-speed gas 
on a tr iangular lattice, a = 1, 2 ..... 6. A particle's state is completely specified 
at some time t by specifying its position on the lattice xi  and its m o m e n t u m  
Pi = rnceai at that  position. The particles obey Pauli exclusion, since only 
one particle can occupy a single m o m e n t u m  state at a time. The total  
number  of  configurations per site is 2 B. The total number  of  possible single- 
particle m o m e n t u m  states available in the system is N t o t a  I = BN.  With P 
particles in the system, we denote the filling fraction by d =  P/Ntotal. 

The number  variable, denoted by n~(x, t), takes the value of one if a 
particle exists at site x at t ime t in m o m e n t u m  state rnc~a, and takes the 
value of zero otherwise. The evolution of the lattice gas can then be written 
in terms of n,  as a two-par t  process: a collision and a streaming part.  The 
collision par t  reorders the particles locally at each site, 

n'~(x, t ) =  n~(x, t ) +  ~ ( n ( x ,  t)) (1) 

where ~ a  represents the collision opera tor  and in general depends on all 
the particles n at the site. So as a shor t -hand we suppress the index on the 
occupat ion variable when it is an argument  of  ~?a(n(x, t)) to represent this 
general dependence. In the streaming par t  of  the evolution the particle at 
position x "hops"  to its neighboring site at x + l~a and then time is 
incremented by 3, 

n'(x  + l ~ ,  t + z) = n.(x,  t) + s t)) (2) 

Equat ion (2) is the lattice-gas microdynamical  t ranspor t  equat ion of 
motion.  The collision opera tor  can only permute  the particles locally on 
the site, since we wish the local particle number  to be conserved before and 
after the collision. 

We construct  an nth-rank tensor composed of a product  of  lattice 
vectors (13) 

E ~ = Eg, ...i, = ~ (e , ) i~ . . .  (e,) i ,  (3) 
a 

where a = 1 ..... B. All odd-rank E vanish. We wish to express E ~2") in terms 
of Kronecker  deltas, J0 = 1 for i = j and zero otherwise. We can turn this 
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problem of expressing the E-tensors in terms of products of Kronecker 
deltas into a problem of combinatoric counting. We use the tensors 

z/,~. = ~ u (4) 

A~kl = ~O~k~ + ~kC~;I +GtG; (5) 

and so forth. Then we know that if E is isotropic, it must be proportional 
to d 

E ~2"1 oc d ~2,'J (6) 

and that the constant of proportionality may be obtained by counting 
the number of ways we could write a term comprising a product of n 
Kronecker deltas. Consider, for example, the case 17=2. Since the 
Kronecker delta is symmetric in its indices, the following four products are 
identical: ~0.~kl= ~i;j~/, = ~j~C~kl= C~jfll,. The degeneracy is 2 2. Furthermore, 
the order of the Kronecker deltas also does not matter since they commute; 
that is, ~USk~=8k~SV. The degeneracy is 2!. For the case where n is 
arbitrary, there are 2" identical ways of writing the product of n Kronecker 
deltas. For each choice of indices, there are an additional n! number of 
ways of ordering the products. Therefore, the total number of degeneracies 
equals 2"n! = (2n)!!. The total number of permutations for 2n indices equals 
(2n)!. So from this counting procedure we know that zl t2"~ consists of a 
sum of (2n!)/(2n)!! = (2n -- I )!! terms. 

In general, the lattice tensors are 

E 2 .  + 1 ~ 0 

E 2 .  _ _  

D ( D + 2 )  

B 

. ( D + 2 n - - 2  

(7) 

,~-'" (8) 

3. MESOSCOPIC D Y N A M I C S  

To analyze theoretically the lattice-gas dynamics, it is convenient to 
work in the Boltzmann limit where a field point is obtained by an ensemble 
average over the number variables. That is, we may define a single-particle 
distribution function, f~ = (n, , ) ,  resulting from an ensemble of initial con- 
ditions and the neglect of correlations, with the averages taken over the 
ensemble. 

It is essential to determine the macroscopic limit of the microdynami- 
cal transport equation (2) and to see how it leads to noncompressible 
viscous Navier-Stokes hydrodynamics; for a lengthier treatment of this see 
Frisch et aL (6~ 
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Using the Boltzmann molecular chaos assumption, we find that the 
averaged collision operator simplifies to ( ~ a ( n ) ) = f 2 a ( ( n ) ) ,  and by 
coarse graining and Taylor expanding (2) we obtain the lattice Boltzmann 
equation 

c3tf,, + ce . iOi f . ,  = Q,,(f) (9) 

We write the particle number density, momentum density, and moment 
flux density in terms of the single-particle distribution function as follows: 

m ~ , f . = p  (lO) 
a 

mc ~ eoif~ = pvi (I I ) 
a 

m c  2 ~ ,  e,,ie,~jf,, = H O. (12) 
a 

Now following Landau and Lifshitz, t91 we know that in standard form 
we must be able to write the momentum flux density tensor as follows: 

mc2 ~ e,,ie,,Jf,, = Pfio" + privy-- a~ (13) 
a 

where in (13) the first two terms represent the ideal part of the momentum 
flux density tensor and a ~ = r l ( O ~ v j - a j v ~ )  is the viscous stress tensor. 
Alternatively the momentum flux density tensor may be written 

Hi) = m c  2 ~,  eoie,,y f , ,  = --tr ~ i + pv~v.i (14) 
a 

where trv is the pressure stress tensor 

a U = -p6;y + q(O; vy + 0~ vy) ( 15 ) 

The general form of the single-particle distribution function, appropriate 
for single-speed lattice gases, is a Fermi-Dirac distribution. Fundamentally, 
this arises because the individual digital bits used to represent particles 
satisfy a Pauli "exclusion principle. Therefore, the distribution must be 
written as a function of the sum of scalar collision invariants ~ + f l e a ~ v i ,  
implying the form 

1 
f a -  1 + e  ~+pe'v' (16) 
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Taylor expanding (16) about v = 0  to fourth order in the velocity and 
equating the zeroth, first, and second moments offa to (10), (11), and (12) 
respectively, we determine the parameters 0~ and ft. The inviscid part of the 
lattice-gas distribution function becomes 

(~r 'eq'~ ideal - - n  + nD Ja  , ' L G A - -  - '~eaiVi "~- g nD(D + 2) d,,i~ujvivj 
2c2B 

n ( D + 2 )  , 
g 2c2------ff-v- (17) 

where 

D 1 - 2 d  
g ~ D + 2  1 - d  (18) 

That is, using p = mn for the density and cs = c/v/D for the sound speed, 
we find the moments of the lattice-gas distribution 

m ~,/feq~ideal (19) ~da / L G A  ~ P  
a 

mc ~ e~,i,., r LOA = PVi (20) 
a 

( f e q ~ i d e a l  __ 2 V -  mc2/ ,ea iea jxaa  Z L G A - - P C s  1 - - g  (~O."}-gpvivj 
a 

(21) 

The lattice-gas automaton almost produces the correct form for the 
momentum flux density tensor, except that H,j appears to have a spurious 
dependence on the square of the velocity field, (1 -g(v2/c2))  with a factor 
g arising as an artifact of the discreteness of the number variables. Working 
directly in the Boltzmann limit and using only symmetry arguments, it is 
possible to fix this problem. 

The macroscopic equations of motion are then determined from mass 
conservation (continuity equation) and momentum conservation (Euler's 
equation) 

O,p + ai(pv,) = 0 (22) 

and 

a,(pv;) + 0/Hu= 0 (23) 
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Substituting (21) into Euler's equation (23) gives us the Navier-Stokes 
equation for a viscous fluid 

p(O,v i + gvjOjv,) = -Oip + qO~-vi (24) 

given a nondivergent flow (OiD i = 0 )  appropriate to the incompressible fluid 
limit and where the pressure is 

p=pc~, l + g ~  (25) 

A general expression for the shear viscosity r /for a single-speed lattice gas 
has been derived by H6non. (7) 

In any lattice-gas simulation, one typically obtains a realization of the 
macroscopic dynamical variables by block averaging in both space and 
time over the mesoscopic variables. In this way, for example, a momentum 
map can be produced so that the dynamic evolution of the fluid can be 
monitored. The size of the coarse-grain block affects the resolution with 
which one can observe the system, but of course does not at all affect the 
underlying dynamics. If too small a coarse-grain block size is used, more 
fluctuations in the macroscopic variables occur. 

4. LATTICE BGK EQUATION 

We wish to consider a dynamical transport equation for the particle 
distribution function given in the previous section. We have a lattice 
Boltzmann gas defined on a discrete spatial lattice. Restricting ourselves to 
a single-speed lattice-gas system, the lattice BGK equation is 

~ t  "~- s aiO i f a = - - ~ ( f o -  f aeq ) (26) 

This equation was introduced in 1954 by Bhatnager, Gross, and 
KrookJ 3"~~ A way to obtain (26) was introduced by Chen etal. ~5) by 
expanding the lattice Boltzmann collision term to first order about the 
equilibrium distribution and assuming it diagonal. 

It is possible to fix the anomaly in the fluid pressure that occurs in the 
lattice-gas automaton. Chen et aL (4~ introduced a pressure-corrected equi- 
librium distribution having the following Chapman-Enskog expansion 

(r162 _ B  +riD nD(D + 2) daiO.jvivi_ nD vZ 
d a  ) B G K - -  -~eaioi"~- 2c2B (27) 
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which satisfies 

m ~  .,,, vc = P  1 -  (28) 

]T/C E t , ' eqx idea l  __ e,itJ,, )PC -P/) i  (29) 
a 

mcZ ~ eaie,,j,., c'eq~iaeal -- pc~ dO. + pc -- (30) 
a 

Here the definition of the density is modified by the 1 - v2/c 2 factor. 

5. DENSITY-DEPENDENT PRESSURE IN THE 
BOLTZMANN LIMIT 

Here we exploit the analytical facility of the lattice Boltzmann 
approach and show that the addition of a convective-gradient term in the 
lattice Boltzmann equation allows one to model a hydrodynamic gaseous 
flow governed by a general equation of stateJ ~4) The pressure may have a 
nonlinear dependence on the local density. It is possible to generalize this 
to a multispeed lattice gas or a to single-speed lattice gas coupled to a heat 
bath so that the pressure dependence includes the local temperature as well. 

The equation of state for the isothermal gas is 

p=c~.p (31) 

We now wish to consider how we may alter the lattice-Boltzmann equation 
to allow for a more general equation of state. Let us add an additional 
term, P,(x,  x + reo), to the r.b.s, of (9), 

O,f.(x, t )+ce.iOif .(x,  t) = 1  [g2.(x, t ) + P . ( x ,  x+re~,  t)] (32) 
T 

P.  depends on the local configuration of the system at position x as well 
as on the local configuration at a remote position x + re.. We assume that 
the values of ~, at x and x + re. are independent and that therefore Pa can 
be factorized 2 

Pa(x, x + re., t )=  ~(x) ~(x + re.) (33) 

2 The effect of long-range interactions on f . (x) will actually depend on local configurations at 
x + re. and at x -  re.. So we could write the full form of the long-range part of the collision 
operator as �89 [ ~b(x) ~(x + re . ) -  ~ ( x -  re.) ~b(x)], where the factor of �89 must  be included to 
avoid double counting when doing any directional sums ~ ,  since qJ here does not have any 
directional dependence. According to Theorem 1 in Appendix A, upon expanding 
~O(x) qJ(x+_reo), both terms would add to remove the �89 factor, so using P o =  ~b(x) ~(x+re.)  
in the present calculation ultimately gives the same result. In Appendix B, where we give the 
microscopic long-range part of the lattice-gas collision operator, the microscopic ~b does 
have directional dependence, so we use the full form there. 
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In a single-speed lattice-gas model such as we have been considering, P .  is 
a function of the local density. In a single-speed model coupled to a heat 
bath, P~ may depend on the local temperature as well/~5) 

We wish to constrain the form of P .  so as not to violate continuity. 
We require 

P,, = 0 (34) 

and when Oif. = 0, 

e.iP. = 0 (35) 
a 

Constraint (35) is required only under uniform filling conditions; i.e., for 
general situations Z. e,.P,,  is nonzero. In the uniform flow limit the lattice- 
Boltzmann equation reduces to 

O,f.(x, t) =-1 [12.(x, t) + P(x, x + re., t)] (36) 

where we have taken the directional dependence of the long-range colli- 
sional term to occur only in its argument, P . ( x + r e . ) ~  P(x+re.) .  We 
assume the probability of a long-range collision depends only the density 
at the spatial location of a momentum transfer event and not on the direc- 
tion of the momentum transfer. That is, we require the interaction distance 
to be of sufficiently long range that the approximation of local isotropy in 
the particle distribution is valid. Summing over all lattice directions and 
using constraint (34), we have maintained the collision property that 

~' I2~ta' = y" ((2. + P.)  = 0 (37) 
a 

Thus, for arbitrary flows, summing the lattice-Boltzmann equation (32) 
over all directions preserves continuity 

0, y ' f~  + c Z e . ,0;f .  = 0 (38) 

O,p + O~(pvi) = 0 (39) 

where we have used (37). 
Multiplying the lattice-Boltzmann equation by ea~ and then summing 

over directions gives 

O, Z e. ,L(  x, t) + cOj Y" e.,eajL(x, t) 

1 
= - r t) ~ e.it~(x + re., t) (40) 

72 
a 
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Using Theorem 1 in Appendix A we can expand the r.h.s., 

O, Z ea,L(x, t) + cOj Z e,ge~jL(x, t) 
a a 

= + ;  ~(x, t) - ~ / ' -  

Therefore, we again arrive at Euler's equation 

0,(pui) + Oj(II u) = 0 (42) 

but with an augmented momentum flux density tensor 

,l :_mc2 2 eo, eo, L-mc2  ?-)?-U- 
o \ z / \ 2 /  

x rS• f dxk ~9(x, t) Ok(rO) -D]2 iD/2(rO) ~b(x, t) (43) 

Since the additional term in the momentum flux density tensor is diagonal, 
it can only impart an effective density-dependent pressure. 

Defining a configurational potential energy as 

V(x) = mc2B \ l . / \ 2 7  

x f dxk Ip(x, t) Ok(rO)-9/2 Io/2(rO) ~(x, t) (44) 

we obtain from Euler's equation (42) the viscous Navier-Stokes equation 
for nonideal fluids 

Ot(PVi) 4- Oj(pvioy) : -Oi(c~p 4- V(p)) 4- pvO2vi (45) 

Therefore, we have arrived at a general equation of state defined by the 
potential energy function V(p) where there is an interparticle force F;(x) = 
-0~ V(p(x)). The form of the density-dependent pressure directly follows, 

p(p) 2 =cup + V(p) (46) 
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With this methodology, we can model a system with a general equation of 
state with completely local dynamics described by the generalization of 
(26), 

-g 

f~(x + 1~, t+ z)=f~(x, t ) -  ~(f ,(x,  t)--f;q(x, t)) 

+ ~k(x, t) q,(x + rea, t) (47) 

In the Boltzmann limit, the analysis itself does not indicate the form of V 
in (46) (or more to the point, does not indicate the form of ~b), but does 
show it is possible to have a lattice gas that has Navier-Stokes dynamics 
as its macroscopic limit with a density-dependent pressure (45). This is the 
motivation needed to develop a more complete microscopic description. 
With a lattice-gas automaton microscopic description, the interparticle 
force -0~ V(p) may be caused by long-range momentum exchange between 
two particles. Calculating the probability of such momentum exchange 
events should provide a way to determine ~. 

Note that in the mesoscopic regime in which the Boltzmann equation 
is applicable, the lowest order expression for V is proportional to Oz. That 
is, 

=----~--mc2B(;) 
V(x) ~ dXk O(x) Ok~k(x) (48) 

o r  

V(x) = --~--  r (49) 

A similar calculation was done by Shan and Chen, (~21 who verified their 
analysis by comparing with data taken from lattice BGK simulations. They 
also presented exact calculations for the liquid-gas interface profile and 
surface tension. In the following section we take another viewpoint and 
write an alternate expression for the potential energy, but one that is also 
proportional to ~,2. This alternate view of the potential energy will help 
toward developing the lattice-gas automaton microscopic description. 

6. INTERACTION ENERGY 

We introduce a potential energy due to nonlocal two-body inter- 
actions 

H'=~ ~. ~ (1-f~(x))fo(x) V,b,,,,(1-f,,(x'))f,,(x') (50) 
( x x ' )  (, abmn > 
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where V.b.,,,= VAabmn and A.b .... is either _1  or vanishes for any set 
{abmn} that violates mass, momentum, or energy conservation. H '  
accounts for the potential energy between particles incoming along lattice 
directions b and n and outgoing along a and m and is therefore restricted 
to two-body interactions. 

We now try to justify the form of H '  and in so doing develop a 
microscopic description of the lattice gas with long-range interactions. We 
require 

pi= -Oi H' (51) 

H '  is thought of as the configurational potential energy due to momentum 
transfers between two locations. The momentum exchange per unit time 
between two points x and x '  in the fluid is 

6p i=  mo~ -- mt)iin (52) 

in  where the incoming and outgoing velocity states are quantized: v~ =ceb~ 
O1.1l and v~ = eeoc. The probability if(x) of there being a local momentum 

change at some point x depends independently on the probability fo(x) 
that there is a particle in velocity state ceb~ and the probability 1 - f ~ ( x )  
there is not a particle in velocity state ce.i. So in this factorized approxima- 
tion that neglects particle-particle correlations, we write 

~k(x) = (1 - f ~ ( x ) )  fb(x) (53) 

.!  As a long-range momentum exchange event involves two sites x and x ,  we 
can define the vector r~=reo~=x~-x~, and therefore the parallel and 
perpendicular components of the local momentum exchange are 

~ p t l = 6 p - ~  (54) 

fie• = 10p• fl (55) 

The two components of the force mediated by the long-range momentum 
exchange could be interpreted as created by two separate fields 

6E=6Ptl(r) c f (56) 
l 

OB - fip• c ~ • ~ (57) 
1 

where 6pl I and 6p• are written as a function of r since any kind of func- 
tional dependence is allowed provided enough detail is specified for the 
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automaton interaction rules. We have explicitly written the forms of the 
parallel and perpendicular components of a lattice-gas force field to stress 
an analogy with the classical theory of electromagnetism, where the electric 
and magnetic fields are expressed, for a differential element of charge and 
current element, respectively, by the laws of Coulomb and Biot-Savart 

dE = .6_~_Q_2 ~ (58) 
4rtr 

dB = 4--~r2 fil x f (59) 

Using (53), we can write the total momentum change as a field itself 

@ i ( x , x ' ) = - m c  ~ (e , , i -ebi+e. , i -e , , i ) (1- f . (x ) )  
( abmn ) 

xfb(x) Aab.,,,(1 -- f,,,(x') ) f,,(x') (60) 

Note that the momentum change is zero for a fluid with uniform density 
due to the symmetry of the lattice. For  central-body interparticle momen- 
tum exchanges, in the Boltzmann limit we can then approximate the 
configurational potential energy as 

ri  t~pi 
g ( x ,  x ' )  - -  

/7 

, 

( abmn ) 

x ( 1 - f~)  fbA.o.,,,(1 --f..) f,, (61) 

where r is the range of the interaction. For a system locally isotropic in its 
particle distributions, letting ~b(x)= ( 1 - f ( x ) )  f (x) ,  this may be simplified 
to 

V(x.x')=-~mc- y~ ~ ~. (~,o-~ + ~.,-  ~,,) 
< abmn > < abmn ) 

x A.b.,,,tp(x ) O(x') (62) 

which is suitable for a bulk description of the fluid. Now the form of H'  
follows if we sum over all pairs ( x x ' )  and define 

V'ob,,,,,=mcZ (~) f ' ( ~ - - ~ b  + ~,,,--~,,) A.b ..... (63) 

so that 

H'= ~ V(x ,x ' )= ~" Y'. O(x)V.b.,,,~b(x') (64) 
( x x ' )  (xx'> (abmn) 
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7. E-FIELD C O N S T R U C T I O N  

It is possible to define a field that  exists in a lattice gas that  has long- 
range m o m e n t u m  exchanges occurring. The notion is to consider each 
lattice-gas particle as having a delta-function-type field that  exists only at 
certain fixed ranges and certain fixed angles. Therefore, the lattice-gas par-  
ticle has a highly anisotropic field. However,  in the coarse-grained limit 
obtained by averaging over many  particles, a valid description of a con- 
tinuous field emerges. Of  course, if there are no gradients in the coarse- 
grained density of the system, the field must  necessarily vanish. 

The field at posit ion x due to a particle at position x'  along the lattice 
direction a is a delta function 

e.,(x; x ) = - - f -  ~ e(~r) 6(x - x '  - r~O,,) e,,, (65) 

Tha t  is, the discrete field must  be directed along ~, and must be a distance 
r~ from the source, or x = x'  + r~O,,. The total  field is obtained by consider- 
ing all the possibilities where a particle could contribute. The sum over a 
is necessary to account  for multiple interaction ranges, where 0c(a) denotes 
the strength of the interactions at range r~. Thus to obtain the total  field 
we must sum over all directions and integrate over all positions 

Ei(x) = ~ f dx' ~(x') e.i(x; x') (66) 
u 

o r  

m c  2 

E,(x)  = - - f -  y" e (a)  ~ e. iO(x -- r~0a) (67) 

Using Theorem 1 in Appendix A, we can evaluate the directional sum and 
express the field as a gradient of  a scalar quanti ty 

El(X) =-Oilmc2B~ix.(;)*/2(r.O)-n/2Io/2(r~O)O(x)] 
L g 

(68) 

where p,, is defined as 
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N o t e  that /~ > 0 for attractive interactions and p < 0 for repulsive inter- 
actions. Since E; = Oil, the field's scalar potential is 

['~'k<a 
~b=-mc2B2lG~-~j (r=O)-DI2lol2(r=O)~s(x) (70) 

a 

= - m c 2 B ~ l ~ a  0 4  2D(D+ + ... (71) 

The field E; and the event probability ff = d(1 - d )  appear in the Navier- 
Stokes equations as follows: 

,[( O,(pvi)+Oj(gpv~vs)=-c~O ~ p l + g ~  +OE~+pvO2v~ (72) 

and according to (43), the term OEi when due to central-body interactions 
can modify only the pressure. 

8. STABIL ITY A N A L Y S I S  

In this section we consider the linear response of a lattice gas with 
long-range central-body interactions. The macroscopic equations of motion 
are (39), (72), and (68), respectively: 

O t p  + O i ( p v i )  = 0 

[( O,(pv~)+Oj(gpv~vj)=--c~Oi I) l+gc . _  +OEi+PVO2v~ 

E i ( x ) =  O, mc 2 - p , ,  ( r ,~ O )  - D / 2  

L ~r 

x ID/2(r,,O) ~(• 

We treat the effect of the field E,. as a perturbation on a resting equilibrium 
state where p is uniform and constant and v = 0. Then an e-expansion of 
the dynamical variables is 

vi = eui (73) 

P = Po + e0 (74) 

~b = ~Oo+e~o (75) 

Using ~b = ( 1 - d) d, we have 

1 - 2 d o  
q~ m ~  0 (76) 

822/81/'1-2-18 
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where do = po/rnB. Consequently, the linear response equations are 

OtQ -J- PoOiUi = 0 (77) 

PoOtUi= -c~OiO-I~oOi mc2B t~. (r~a)-~ 

q~] + poVoOZUi (78) Io12(r~O) x 

Then applying 0, to the continuity equation and a; to the Navier-Stokes 
equation allows us to eliminate ui and to obtain the following second-order 
equation in Q: 

2 _ 2 2 /~. (r .O)-o/2 O, Q - c=O Q + ~bo( 1 - 2do) czO 2 

x Io/2(r~O) QI + v~ (79) 

In an inviscid fluid (v = 0) with no interparticle potentials (E~ = 0), Q would 
satisfy the wave equation 

Q =po e-i'o'+iki''i (80) 

Given a nonzero perturbation, 0 can be Fourier expanded 

f do9 dki fie -~'~ (81) Q 

and we can replace Q with ~ by taking 0,--+ -ico and 0;--, ik,. Then (79) 
becomes 

= " ' -  -- - -  I ' : ~ ~ )  ( r . k )  -Di2 

x JDi2(r~k) 5] + iCovok2~ (82) 

where we have made use of the identity that relates the hyperbolic Bessel 
function with imaginary argument to the ordinary Bessel function 

(iz)-~ I.(iz) = z-"J.(z) (83) 

Dividing out ff gives a quadratic equation for co, 

v ~ 1 7 6  1 + ~o(1 _2do) D Z/xo_ ( r :k ) -O i~-Jo l=( r .k )  
+i c= \C=l 

(84) 
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The dispersion relation for co(k) is then 

co= +k 1 + +~o(1 --2do) D ~ p .  (r,k)-~ 
Cs -- "~C2s o 

i vOk2 (85) 
2cs 

The field to lowest order in the interaction range is 

mc-B r 
E,(x) = O~b(x) 

This implies that the local force is 

~bEi=-O~[2mc:B(~)~b2 ] 

(90) 

(91) 

(92) 

In the long-wavelength limit, (85) reduces to linear sound speed dispersion 

co = csk (86) 

In the absence of  long-range interactions, (85) reduces to the dispersion 
relation for ideal, incompressible, viscous flow 

vok'-'~ 1/~- ~ok ~ 
co=c.,.k I +---;-v- - i - -  (87) 

4c; J 2 

By choosing different ranges and strengths of the momentum 
exchanges we can adjust the dispersion relation (85) and produce a variety 
of interesting dynamical behaviors. Therefore, in the macroscopic limit, 
what principally defines the linear response of a lattice-gas model with 
long-range interactions is the set of constants co(a) and r~. 

9. F INITE-TEMPERATURE L IQUID-GAS MODEL 

A simple two-dimensional example is a lattice gas on a triangular lat- 
tice. The macroscopic equations of motion for the lattice-gas automaton are 

O,p + Oi(pvi) = 0 (88) 

O,(pvi) + Oj( gpv~vj) = --O ~ p + pvOZvi (89) 
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Since ~ = d( 1 -  d), the pressure is a simple polynomial 

~ [ ( v2) ~(h)r '2" ] p(d,h)=mc;B d l + g ~  + - - - ~ a t l - d )  2 (93) 

where we have written the pressure depending on the density and a tem- 
perature control parameter h that modifies the strength of the interactions, 
0~ = 0~(h). This will be discussed in more detail below. It is possible to deter- 
mine the coexistence curve for such a finite-temperature liquid-gas system. 
We begin by defining the free energy G as 

c a dn Op(n, h) 
G(d'h)=Jao n On 

Using (93) for a fluid at rest, we can carry out the integral to obtain 

G( d, h)=mc2B E ~ h ) r ( 4d 3 . 4d3"~ \ - 2d + 3d 2 - ~ - -  + 2d 0 - 3do 2 -r --~-) 

(94) 

A Maxwell construction can be performed by making a parametric plot of 
the free energy versus the pressure and locating the point at which the 
curve is double valued. That is, there are two densities, corresponding a 
rarefied phase and a dense phase, that have the same pressure and minimal 
free energy. The critical temperature hc can be found by finding the isother- 
mal pressure curve that has an inflection point 

o r  

Op(d, he) 
Od 0 (96) 

l 
a(hc) = (97) 

2rd( 1 - d)( 1 - 2d) 

To verify our theory, we can perform exact numerical simulations of 
a finite-temperature multiphase system. We can extend an Appert-type 
nonthermal model to work in a finite-temperature domain by coupling the 
long-range interactions to a heat bath of variable density, denoted by a 
parameter h, and by allowing repulsive long-range interactions in addition 
to the attractive ones. This is done in such a way that the likelihood of an 
attractive and repulsive interaction goes as (1 - h )  2 and h 2, respectively.I]5) 

+,og(jo) ] ,95, 
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Fig. 1. L o n g - r a n g e  bounce-back collision coupled to a heat bath. Open circle denotes a heat- 
bath hole and a filled circle denotes a heat-bath particle. Interaction (a) to (b) represents p a r -  

ticle attraction emitting two heat bath particles. The reverse interaction (b) to (a) represents 
particle repulsion absorbing two heat bath particles. 

Figure 1 depicts the long-range interaction called bounce-back and how it 
is coupled to a heat bath. At zero temperature, when h = 0, we recover the 
minimal model, as only attractive long-range interactions can occur. 
Figure 2 shows the time evolution of the phase separation process in this 
case at a density d = 0.07 and interaction range r = 6/. As h increases, the 
likelihood of repulsive interactions also increases to the point where at the 
infinite-temperature limit, h = 1/2, the likelihood of attractive and repulsive 
interactions becomes equal. The occurrence of  both long-range attractive 
and repulsive interactions is identical to a system with finite-impact- 
parameter collisions. Therefore, the infinite-temperature system behaves as 
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F i g .  2.  T i m e  evo lu t ion  o f  a l i q u i d - g a s  p h a s e  separa t ion  for a lat t ice gas w i t h  l o n g - r a n g e  

attractive interactions at range r =  6 o n  a 1024 • 1024 lattice starting with a uniformly random 
configuration of density d = 0.07. 
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an ideal neutral fluid but with an enhanced mean free path. The nominal 
strength of the interaction when coupled to a heat bath is cr 
- % ( 1 - h ) 2 + % h 2 = - % ( 1 - 2 h )  given a local momentum change of 
magnitude tip = % m c  due to long-range interactions of range r. For a two- 
dimensional example D = 2, we use the values m = c = l = 1, B = 6, 0% = 2. 
With the fluid at rest, the pressure is then 

p =  3 d -  3rd2(1 - d ) 2 ( 1  - 2h) (98) 

and the critical value of h is 

1E ' 1 h,.= 1 2rd(1 - d ) ( 1 - 2 d )  (99) 

Figure 3 shows liquid-gas coexistence curves for this lattice-gas model at 
three different interaction ranges: r = 7 ,  9, and III. Both the mean-field- 
theory calculation and the exact numerical data are presented. The com- 
parison of the theory to the numerical simulation is in good agreement. In 
the Boltzmann limit, the probability of a long-range interaction goes as 
~,2= d2( 1 -d)- ' .  It is expected that this estimate, which neglects all particle 
correlations, would suffer the most at low densities where the mean free 
path between local collisions becomes comparable to the range of the non- 
local interactions. This may account for the deviations that are observed at 
low densities. The mean-field predictions of the critical point are also in 
quite good agreement with the numerically obtained values. Figure 4 shows 
the mean-field calculation and exact numerical data taken at five different 
interaction ranges: r =  7 through 1 ll. The calculated value of h c is slightly 
higher than the measured value for all cases, indicating a systematic 
deviation. 

For the liquid-gas system, the dispersion relation (85) reduces to 

m =  +k  1 + -do(1  - d o ) ( 1 - 2 d o )  De(h )  
C s  - -  

1/2 . vok2 
x ( r , , k ) -W2 jo/2(r~,k) - t 2c--~, (100) 

Figure 5 shows the real and imaginary parts of the liquid-gas dispersion 
curve for a two-dimensional system with a density of d--0.20 and momen- 
tum exchanges of tip-- - 2 m c  over a range of r = 9/. Also shown for com- 
parison purposes are the dispersion curves for an ideal, viscous fluid. In a 
long-range lattice gas, since the kinematic shear viscosity is dependent on 
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Fig. 3. Liquid-gas coexistence curves for the simplest lattice-gas models (Appert-type mini- 
mal model extended %0 finite temperatures by coupling to a heat bath with filling fraction h) 
with long-range attractive and repulsive interactions. Mean-field theory versus numerical data 
is shown for the model at three different interaction ranges. 
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Fig. 4. Liquid-gas critical point values versus interaction range for the simplest lattice-gas 
models (Appert-type minimal model extended to finite temperatures by coupling to a heat 
bath with filling fraction h) with long-range attractive and repulsive interactions. Mean-field 
theory versus numerical data is shown for the model at five different interaction ranges. 
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Fig. 5. The real and imaginary parts of the liquid-gas dispersion relation for a two-dimen- 
sional system rendered (solid curves). Model parameters: range 9, density 0.2, attractive 
interaction of strength 2. The dashed curves are the dispersion relations for an ideal, 
incompressible, viscous fluid. 
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Fig. 6. K i n e m a t i c  s h e a r  v i scos i ty  ve r sus  n o n l o c a l  i n t e r a c t i o n  r a n g e s  for  severa l  l i q u i d - g a s  

l a t t i ce -gas  m o d e l s  a t  dens i ty  0.6. 

the square of the mean free path, which in turn is proportional to the 
interaction range, the following approximation is made for %: 

v0(r) = Vr=o( 1 + 0.1r 2) (lO1) 

Numerical confirmation of the parabolic dependence of the kinematic shear 
viscosity on the interaction range is presented in Fig. 6. Several lattice-gas 
models were tested by varying the strength and number of interactions. 
Viscosity measurements were made by the method of a decaying sinusoid 
and were done for systems at a density of 60 % filling. 

10. CRYSTALLIZATION 

In this section we introduce a lattice-gas automaton with multiple 
fixed-range interactions that possesses a liquid-solid phase transition. In 
the previous section, we tested our formalism that models interparticle 
potentials in the coarse-grain limit by using a single anisotropic fixed-range 
interaction in the lattice-gas dynamics for discrete momentum exchange 
between particles in the microscropic limit. Here a direct generalization to 
the finite-temperature liquid-gas model is introduced using long-range 
repulsive and attractive interactions over multiple ranges. For crystalliza- 
tion to occur, at least two interaction ranges are necessary: an attractive 
short-range interaction and a longer range repulsive interaction resulting in 
a kind of Wigner crystal. 
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10.1. New Way for Molecular Dynamics Modeling 

To model a more realistic crystal, that is, one that can undergo rigid-body 
motion such as rotation and that can have well-defined edges or surfaces, more 
then two interaction ranges are required. Usually four to eight interaction 
ranges are used to produce a Lennard-Jones-type molecular potential. 

The shortest range interaction creates a potential  well that  stably traps 
a group of lattice-gas particles. This group of particles remains in a 
localized configuration and behaves as a single collective entity. This per- 
sistent collective entity is referred to here as an "atom."  As in the l iquid-gas 
system, each lattice-gas particle possesses a discrete field that  acts along the 
lattice directions. But now since many  lattice-gas particles are grouped 
together, in the coarse-grained limit they act as a single particle with a con- 
tinuous field around it. It can behave like a charged particle and repel 
other such a toms in the system or can behave like a Lennard-Jones  particle 
and at tract  other atoms,  depending on the chosen interactions. Starting 
from a uniformly random configuration at d =  0.1, the lattice gas spon- 
taneously crystallizes into arrays of  these atoms. The emergent crystalline 
lattice is hexagonal  close packed. A two-dimensional  example, with an 
underlying 512 x 512 lattice, of  this t ime-dependent  crystallization process 
is given in Fig. 7. The resulting crystal is in a hexagonal-close-packed con- 
figuration since we have striven to make  the coarse-grained interatornic 
potential  be radially symmetric.  3 Three-dimensional  5123 simulations of  the 
crystallization were also carried out (see Fig. 8). 

It is possible to measure the density cross section for the crystal in its 
final equilibrium state; see Fig. 9. With a principal crystal direction aligned 
parallel with the x axis, average density cross-sectional data  were taken for 
a 512 x 512 system; that  is, 512 samples were averaged. In this case, the lat- 
tice-gas model  had six interaction ranges: r =  - 2 ,  - 7 ,  19, 21, - 2 4 ,  - 2 6 .  
Here the negative sign preceding the range denotes an atractive interaction 
at that  range. The averaged cross-section da ta  very closely produce a 
Gaussian-shaped curve. 

In the two-dimensional  numerical simulation, to obtain isotropy in the 
macroscopic  limit, 12 directions are used for long-range m o m e n t u m  
exchanges instead of 6. This is possible because the underlying tr iangular 
lattice has 6 m o m e n t u m  states and the total possible number  of  central- 
body momen tum exchange directions is always twice the lattice coordination 
number.  With 12 m o m e n t u m  exchange directions, the crystal is stable 

If the density of the system is increased, one does observe a transition from a hexagonally 
ordered bubble phase to ordered and random stripe phases. In the context of lattice gases, 
Rothman has shown some pictures similar to Fig. 7 in a two-component immiscible lattice 
gas with a short-range attractive interaction and a longer range repulsive interaction, m~ 
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Fig. 7. Time evolution of crystallization in a two-dimensional lattice gas with multiple fixed- 
range two-body interactions The resulting crystal is in a hexagonal-close-packed configura- 
tion since the coarse-grained interatomic potential is radially symmetric. The underlying lat- 
tice is 512 x 512. Started with a uniformly random configuration at d =  0.1. Twelve directions 
are used for long-range momentum exchanges. Grain boundaries and defects are observed 
during the early stages of the crystal formation. 
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Fig. 8. Lattice-gas three-dimensional crystal. The underlying lattice is a 512 cube. The 
simulation was done on a 128-million-node CAM-8. 
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Fig. 9. Average density cross section of an equilibrium lattice-gas crystal formed using six 
interaction ranges: r = - 2 ,  - 7 ,  19, 21, - 2 4 ,  - 2 6  (negative ranges denote attraction). 
A string of Gaussian functions provides an excellent fit to the numerical data for a two- 
dimensional system. 
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Fig. 10. Solid lines are the real and imaginary parts of the crystal dispersion relation for 
small wavelengths for a two-dimensional system. Model parameters: ranges 7, 19, 21, 26, den- 
sity 0.1, interaction of strength -2,  2, 2, -2. The dotted curves are the dispersion relations 
for an ideal, incompressible, viscous fluid. A positive peak is observed in the imaginary part 
of the dispersion relation, giving rise to an unstable growth of small perturbations and causing 
an emergent crystal structure. 

under translation along any direction and in fact can undergo free rotation. 
Therefore, the crystal acts very much like a solid rigid body. This rigid 
body can also support  elastic waves--shear  waves and compressional 
waves have been observed. 

The local stability analysis of  the equations of  mot ion for the system's 
linear response as carried out in Section 8 is directly applied to this case. 
In the short-wavelength limit, the dispersion is identical to that for an 
ideal, viscous fluid. However, for small wavelengths, there is a crucial dif- 
ference; see Fig. 10. The imaginary part of the dispersion relations has a 
positive peak at about  k--0 .08.  This implies an instability in the lattice-gas 
system that ultimately gives rise to the crystalline structure characterized 
by cell size 2n/k. Therefore, the linear response calculation gives a nearly 
quantitative prediction about  the size of  the emergent crystal's cell size. The 
interaction ranges used in the linear response calculation are r = 7, 19, 21, 
26 with corresponding interaction strengths 0~-- - 2 ,  2, 2, - 2 ,  with density 
d--0.1.  The dashed curves are the dispersion relations for an ideal, incom- 
pressible, viscous fluid presented here for comparison purposes. 
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10.2. The Crystal Reconfiguration Process 

An expected phenomenon that occurs in the early stages of the crystal 
formation is the emergence of grain boundaries and defects. Over time, 
given the inherent fluctuations of the lattice-gas dynamics, the crystal 
undergoes an annealing process that removes the defects and eventually 
produces a prefect crystal. In the two-dimensional case with a radially sym- 
metric coarse-grained potential, the hexagonal-close-packed crystal struc- 
ture emerges as just mentioned. Defect pairs with five and seven neighbors 
are observed. 

An unexpected phenomenon that occurs in the exact simulation is the 
process by which a defect is removed. To describe this process, consider, 
for example, an atom with five neighbors. It may persist in such a 
frustrated situation for some time. Yet what eventually occurs is that the 
lattice structure near this defect begins to fluctuate--"tremors" in the crys- 
tal structure are observed. That is, the other atoms in the immediate 
vicinity of the defect begin to vibrate about their metastable positions. The 
magnitude of the fluctuations increases over time. In fact, the magnitude of 
the fluctuations appears to grow and one may even say that the tem- 
perature of the local crystalline structure appears to rise. When a high 
enough local temperature of this sort is reached, the microscopic dynamics 
suddenly reconfigures a cluster of the atoms and the defect vanishes. The 
reconfiguration of the atoms usually entails a small local rotation of a 
cluster of atoms surrounding the defect site. 

One way to characterize the fluctuations that occur in the system 
leading to the rather sudden reconfiguration of a cluster of atoms is to 
compare the state of the system at one time t to the state at some later time 
t + T by computing a Hamming length. In discrete models, such as the 
Ising model or a Hopfield neutral network, a Hamming length is well 
defined. In a lattice gas, one can also define a Hamming length hr and in 
particular we do so in the coarse-grained limit. That is, a block average of 
the lattice-gas number variables is taken to determine a density field p(x). 
The Hamming length is calculated by summing over all points of the den- 
sity field as follows: 

ht=~ O(Ip(x, t+ T)--p(x, t ) l - e )  (102) 
x 

where 0(y) is the step function, which is zero for negative y and unity for 
positive y, and where e is a small threshold value. Figure 11 shows a time 
series of the Hamming length for a long-range lattice gas of the type 
described above. The lattice size was 1024 x 1024, block size used was 8 • 8, 
and the sampling time was T =  10. The reason for measuring the Hamming 
length is that it provides a rather direct and simple way of determining the 
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Fig. 11. Hamming length time-series data for a long-range lattice-gas with eight different 
ranges. The Hamming length corresponds to the size of a reconfiguration event due to 
inherent fluctuation of the underlying lattice gas. Data taken for a 1024 x 1024 simulation 
using 8 x 8 block averaging and a sample time T =  10. 

scale of the domain of atoms that participate in a crystal reconfiguration 
event. It is interesting to find that the domain sizes of these reconfigura- 
tions shows power-law behavior; see Fig. 12, where we give a log-log plot 
of the frequency of occurrence of a reconfiguration versus its Hamming 
length, In Fig. 12 we see a peak at h~ -~ 5, which is the most common back- 
ground fluctuation. Larger scale fluctuations occur, but the probability of 
occurrence p clearly drops off according to a power law of the form 
p oc l /h7  ~. In this case 0c is approximately 6.3. Smaller fluctuations also 
occur, but these are not responsible for the reconflguration events observed 
during crystallization. 
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Fig. 12. Power-law behavior of the frequency of occurrence versue Hamming length or the 
domain size involved in a reconfiguration event. Graph determined from Hamming length 
time-series data presented in Fig. 11. 
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11. CONCLUSION 

We have presented a mean-field theory of lattice gases with long-range 
interactions. We have focused on central-body interactions that are 
mediated by momentum exchange events between remote spatial sites and 
have used this type of interaction to model two types of physical systems: 
(a) a finite-temperature liquid-gas dynamical system; and (b) a solid-state 
molecular dynamical system. The latter lattice-gas model is very compelling 
and is the most important result of this paper. This lattice-gas model of a 
crystallographic solid body offers an alternative to traditional molecular 
dynamics modeling. The dynamical behavior of the lattice-gas solid is 
exactly computed, in that there is exact conservation of mass, momentum, 
and energy. A solid phase is self-consistently produced through the collec- 
tive and nonlinear behavior of billions of lattice-gas particles as they inter- 
act via local collisions and long-range interactions. A linear stability 
analysis is presented that predicts the formation of "atoms" of a charac- 
teristic interatomic spacing, each atom itself occupying a finite volume and 
composed of thousands of lattice-gas particles. Therefore, the atom, is not 
a point particle, but is distributed over several lattice sites and is stable in 
a self-consistent way. Each atom possesses a Lenord-Jones-type potential in 
the coarse-grained limit. The mass of an atom as well as its field are both 
manifestations of the spatial distribution of lattice-gas particles. A lattice- 
gas particle is interpreted as an informational token that composes only a 
small piece of the atom and contributes to a small piece of its field. We 
have observed an annealing process where defects are removed from the 
crystal where there is a succession of localized vibrations that continually 
build to the point where a cluster of molecules around the defect can even- 
tually undergo a reconfiguration. Fluctuations within the crystal structure 
exhibit power-law behavior. 

APPENDIX  A. LATTICE MULTIPOLE T H E O R E M  

Theorem 1. Let F be a scalar function and r be a fixed scalar dis- 
tance. Then Za eaiF(x +_r~a) may be expressed as a perfect gradient of a 
series expansion: 

~o e~,F(x+_r~a)= +_O,[rB(2)~/2(rO)-D/2ID/2(rO)F(x) 1 (A1) 

where I,.(z) is the hyperbolic Bessel function. 
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Proof. We begin by expanding F(x 4- r~.) as follows: 

~" e.iF(x 4- r~.) 
a 

2 +rea'OJ e~ie- 'J F(x) (A2) 
Q 

= ~ e.;[cosh(r.e./O/) + sinh(r~e.jO:)] F(x) (A3) 
a 

Now the directional sum over e~; cosh(r~e.jO/) must vanish since this is an 
odd function in the lattice vectors. Therefore, the expression for F(x 4- rg.) 
reduces to 

~. eaiF(x +__ r~8) = -t-y" e.i sinh(r~eo/Oi) F(x) (A4) 
a (.i 

~,, 2 n -  1 2 n -  lc~2n- I 
= ++-~ eai r~ e~ -: F(x) (A5) 

. . . .  1 ( 2 n  - 1 )! 

" '  (z ) r .  2 . - ,  O~,,-iF(x) (A6) = 4- (2nn= i)! e"'e~s 

Using the property of the isotropic lattice tensors of rank 2n, identity (8), 
and the fact that the total number of terms comprising the E (2") tensor is 
( 2 n -  1)!!, we can evaluate the directional sum 

eoiF(x +_ r~.) 
Q 

o~ 2,,-1 B ( 2 n -  1) vT 
- +-.~'l r~ "" O;O2"-'-F(x) (A7) 
- = ( ~ n ~ l ) ! O ( D + 2 ) . . . ( D + 2 n - 2 )  

---~ ~ ~ /.2n--1 0i 02,'-2F(X) (A8) 
.=1 ( 2 n - 2 ) ! !  D ( D + 2 ) . . . ( D + 2 n - 2 )  

This gives F(x 4-r~.) as a perfect gradient 

Z eaiF(x 4-r~.a) = +0 i rB . . . .  o... (2n)!! (2n + D)!! F(x) (A9) 

or, explicitly writing out the lowest order terms, 

[rB rSB ] 
. e.iF(x __. r~.) = _ +0i ~ -  F(x) 4 2D(D + 2) O2F(x) + "" (A10) 

822/81/I-2-19 
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Lemma 1. Let D be a positive integer and 

e - � 8 9  ~ (Al l )  

so that e is zero for even D and unity for odd D. Then the following 
identity for the gamma function holds: 

( D)  (2n+D),! /2 (A12) 
F 11+ 1 + --2,,+(0+~)/2 

Proof o f  l_emma 7. This identity for the gamma function follows 
directly by manipulating F(n + 1 + 1)/2) separately for the cases when D is 
even and odd. The following two identities for the gamma function are 
useful: 

F(n + 1) = nF(n) = n! (A13) 

r(1) = 2  e-'2dt=.v/-~ (AI4) 

The first identity holds true for integer n. Using these identities iteratively, 
we find the following expression: 

Then generalizing this last expression, we see that the proof of the lemma 
follows directly, l 

Using Lemma 1, we can substitute the gamma function in place of the 
(2n +D)!!  term in the denominator of (A9), and using (217)!! =2"n!, we 
then have 

e.iF( x +_ r6.) 

= +8i rB 2,,+Io+~v2F( n F(x) ,,=o 2"n! + 1 +D/2)  

= +O, rB \2J  2 ~ n! F(n + 1 + D/2) F(x) (AI6) 

Now the hyperbolic Bessel function has an identical series expansion 

- - "  - ( - ~ : )  (A17) 
-~ L(-') = n! F(n  + 1 + v) t l ~ 0  
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Therefore, taking v = D/2 and considering z to be a differential operator, 
z---, r0, we find that (A16) becomes 

~, %iF(x +__ r~.) = +rO, B 
a 

which completes the proof of Theorem 1. 

l 
(rO)-~ lo/2(rO) F(x)] 

I 

(A18) 

APPENDIX B. NUMERICAL IMPLEMENTATION OF THE 
LONG-RANGE TWO-BODY INTERACTIONS 

A simple computational scheme is employed that allows all the 
dynamics to be computed in parallel with two additional bits of local site 
data, for outgoing and incoming messengers, regardless of the number of 
long-range neighbors. The computational scheme is an efficient decomposi- 
tion of a lattice gas with many neighbors. It is conceptually similar to the 
idea of virtual intermediate particle momentum exchanges that is well 
known in particle physics. All two-body interactions along a particular 
direction define a spatial partition that is updated in parallel. Random per- 
mutation through the partitions is sufficient to recover the necessary 
isotropy as long as enough momentum exchange directions are used. 

An interparticle potential V ( x - x ' )  acts on particles spatially 
separated by a fixed distance x -  x ' =  r. An effective interparticle force is 
caused by a nonlocal exchange of momentum. Momentum conservation is 
violated locally, yet it is exactly conserved in the global dynamics. 

For the case of an attractive interaction, there exists a bound states in 
which two particles orbit one another. Since the particle dynamics is con- 
strained by a crystallographic lattice, we expect polygonal orbits. In Fig. 13 

rl r 2 

t .[ ~.\]~"YZ.(Y / \ / / 
.'I "~ "].X'I/T. "l: ~i~ 3 ",/ 

r,  [ "1" "V'"r "l'" T "r ~L--- ~ . .  

T IZr.i 3Xf :[ T / \ CL_cj- ?C-~].C.C] / , ',, / 

(a) (b) (c) 

Fig. 13. Simple bound-state orbits due to a long-range attractive interaction where the 
dotted path indicates the particle's closed trajectory: (a) partition directions; (b) bounce-back 
orbit with IApl = 2 and zero angular momentum; (c) clockwise orbit with 13pl = 1 and one 
unit of  angular momentum.  Head of the dashed arrows indicates particles entering the sites 
of partition r0 at time t. Tail of the black arrows indicates particles leaving those sites at time 
t + r. The counterclockwise orbit is not shown. 
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we depict two such orbits for a hexagonal lattice gas. The range of the 
interaction is r. Two-body single-range attractive interactions are depicted 
in Figs. 13b and 13c, the bounce-back and clockwise orbits, respectively. 
Momentum exchanges occur along the principal directions. The interaction 
potential is not spherically symmetric, but has an angular anisotropy. In 
general, it acts only on a finite number of points on a shell of radius r/2. 
The number of lattice partitions necessary per site is half the lattice coor- 
dination number, since two particles lie on a line. Though microscopically 
the potential is anisotropic, in the continuum limit obtained after coarse- 
grain averaging, numerical simulation indicates isotropy is recovered. 

B1. Simple Example: Bounce-Back Orbit 

A long-range lattice gas of the type we are considering still possesses 
the usual local dynamics of a hydrodynamic lattice gas. To extend the local 
lattice-gas update rules to include long-range interactions, we use two addi- 
tional bits of local site data. This will allow us to implement a long-range 
interaction using strictly local updating and therefore our algorithm will 
still be parallelizable just like a usual local lattice gas. The two additional 
bits will denote the occupation numbers of messenger particles, or 
"photons." The idea of using messenger particles was introduced by Appert 
et al. ~ ~ We have two types of messenger states, to represent incoming and 
outgoing conditions, and we denote the messengers as tPt and qJr- 

Now for the simplest long-range lattice-gas model, we therefore use 
eight bits of local site data. Since long-range interactions occur between 
remote spatial sites, say x and x', the messenger particles will travel either 
parallel or antiparallel to the vector r = x - x'. All pairs of sites throughout 
the entire space that are separated by vector r can therefore all be updated 
in parallel. We refer to an update step of all pairs of two-body interactions 
along direction r as a parti t ion,  denoted by F,.. All possible two-body inter- 
action pairs are then computed by performing all possible partitions of the 
space. So it requires many scans for the space to perform a single long- 
range interaction step. 

In our two-dimensional example using a triangular lattice, there are 
three possible partitions. The number of partitions is never smaller than 
half the lattice coordination number. In the two-dimensional case, the 
simplest long-range lattice-gas algorithm, though perhaps not the most 
efficient algorithm, is to use three sequential  scans of the space, each scan 
performing the updating necessary for a single partition (see Fig. 13a). 
Often, depending on the complexity of the long-range interactions and the 
dimensionality of the lattice, it is possible to perform s imultaneous updating 
of multiple partitions. This of course is more desirable, yet causes more 



Lat t ice-Gas Crystal l izat ion 

Table I. Lat t ice Vec tor  Components  

a x Component y Component 

0 -1 0 
1 - "  , f i n  
2 �89 x/~/2 
3 1 0 
4 ~ _ --V/3/2 
5 -~ - , , i l l2  
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complexity. Furthermore, this updating requires an extra pair of messenger 
particles for each partition to be simultaneously updated. For simplicity, 
we will not deal with this case here; however, our implementation on the 
CAM-8 does use simultaneous partition updating--repulsive and attractive 
partitions are performed in parallel using four messenger bits. 

Let us consider a simple example of the long-range lattice-gas algo- 
rithm, the minimal model of Appert. Here we consider only bounce-back 
attractive interactions. Suppose there is a single particle at site x = 0 and 
there is also a single particle at site x'  =r] ;  that is, no(X)= 1, n3(x)=0,  
no(X')=0 and n3(x ' )=  1 with all other bits at x and x'  being zero (see 
Fig. 13b). Here we are using the bit convention shown in Table I. Then the 
two particles are separated by a distance r and are moving away from each 
other. The attractive long-range interaction will effectively flip their respec- 
tive directions making no(x)=0 ,  n 3 ( x ) = l ,  no(X')= 1, and n3(x ' )=0 ,  so 
that the two particles will now be moving toward each other. There is a 
local momentum change of 2mc] at x'  and an opposite momentum change 
of - 2 m c l  at x. Locally momentum is not conserved, but nonlocally it is. 

The first step of the long-range interaction sequence is to choose a par- 
tition, say F,,  and then to emit messenger particles along the partition axis. 
The basic local rule for this first step is the following: a photon is emitted 
at a site if there exists a particle at that site that can partake in a long- 
range interaction. Another way of expressing this rule is: send only i f  you  
can receive. Obviously, for a particle to partake in an interaction, there 
must be both a particle and a hole at that site. The factorized probability 
of having such a situation is just d ( 1 - d ) .  So, to continue with our 
example, for a l~hoton to be emitted at some site x parallel or antiparallel 
to a partition direction i, we use the following rule: 

~b ~(x) = no(x)( 1 - n3(x)) (B1) 

~t/(X) = n3(X)(1 -- no(X)) (B2) 
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Note that  according to this local rule, only one photon  can be created at 
a site, and consequently we eliminate the possibility of  a long-range inter- 
action, say of range 2r, mediated through a doubly occupied site. The 
impor tant  consequence of  the emission step is that  for two sites separated 
by the interaction distance r, if both  sites send photons,  both  will 
necessarily receive them, which strictly enforces nonlocal m o m e n t u m  con- 
servation. Give and ye shall receive (provided yours is received). Letting 
~ - ~ .  and 4 - . - O / ,  in general we can write the emission step of the 
minimal  interaction as 

@,(x) = n _~(x)( 1 - n , (x))  (B3) 

where a = 0, 1, 2 covers all the partitions. 
After the emission step follows a long-range kick of the messenger bits. 

In the simple example,  all photons  ~,~ are kicked along - r l  and all photons  
~,, are kicked along rl. In general, for the long-range kick we have 

~,'~(x + rS~) = ~%(x) (B4) 

Finally, we have the absorpt ion step of the long-range interaction sequence. 
Here the local particle m o m e n t u m  state is updated as the particles flip their 
directions, in our  example 

n~(x) = n3(x ) + ifl~(x) no(x)(1 --n3(x))  -- ~'r(X) n3(x)(1 --no(x)) (BS) 

n~(x) = no(x) + ~k'r(x) n3(x)( 1 - no(x)) -- ~ ( x )  no(x)(1 -- n3(x)) (B6) 

Moreover ,  in this step all the messenger bits are set to zero throughout  the 
entire space. For  any direction, the local absorpt ion rule could more  simply 
be written as 

n ' (x )  = n~(x) + q/_~(x) ff~(x) -- ~'~(x) ~b _a(x) (B7) 

Substituting in (B3) and (B4) into (B7), we have a single Boolean expres- 
sion in terms of number  variables for a single long-range interaction step 
for part i t ion F ,  as follows: 

n'a(X) = no(X) 

+ n . (x  + r~.)( 1 -- n _ . (x  + r~.)) n_ . (x ) (  1 - n,,(x)) 

- n _ ~ ( x - -  rOa)(1 - n . (x  - r~.)) n~(x)(1 - n ,,(x)) (B8) 

For  convenience we define a long-range collision opera tor  P~ as follows: 

Pa(x,x+r8.)=t~_~(x+r~,,)~a(x)=~k'_~(x)~.(x) (B9) 
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Table Ii. Long-Range Interaction Sequence 
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Events na(x) zt(x ) z,(x) no(x') zt(x') z,(x') 

Initial 100000 0 0 000100 0 0 
Emit 100000 0 1 000100 1 0 
Kick 100000 1 0 000100 0 1 
Absorb 000100 0 0 100000 0 0 

so that we may write 

n',,(x) = n~(x) + P~(x, x + r~ )  - P_a(x, x - r~a) (B10) 

The state data for the simple example we have been considering are given 
in Table II, which represents all the steps of a long-range interaction 
sequence for a partition along the x axis. 

B2. Another Example: Clockwise Orbit 

To continue illustrating our implementation of a long-range lattice- 
gas, in this section we again consider a system with a single attractive inter- 
action of range r; however the local momentum states participating in the 
interaction are not along the partition direction. Yet in the example given 
here, the momentum exchange is still along the partition direction, so that 
the long-range interaction remains a central-body one, resulting in a bound 
state with two particles trapped in a clockwise orbit. (Note that the restric- 
tion to central-body forces is not necessary, but is presented here for 
convenience.) In this slightly more complicated example, the local rules for 
photon emission, and absorption, (B3) and (BT), respectively, have a more 
general form with the implication that the emission and absorption of 
photons is different from the previous example of the bounce-back orbit 
and should be noted when making lookup tables to do this computation. 
The local photon emission rules can be written 

~a(x) = n~(x)(l - ha(X)) (BI 1 ) 

_a(x) = ng(x)(1 --n/,(x)) (B12) 

where the bits c, d, g, h must by chosen so momentum is conserved, 

ec-- ea + es-- eh = 0 (B13) 

as well as be constrained by central-body parallel and perpendicular 
momentum exchange conditions 

(~c - ~ a -  ~g + ~h)" r = 2 dp  (B14) 

(~  - -  ~ d - -  ~g + ~J,) x r = 0 ( B 1 5 )  
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where zlp is the momentum change per site due to the long-range inter- 
action. In (B 11) and (BI2) the difference from our previous example of the 
bounce-back orbit is the possibility of having two photons emitted at a 
single site. 

To be explicit, for the two-dimensional triangular lattice, we can 
satisfy (B13)-(B15) by choosing the indices c, d, g, h as follows: 

c = a - 2  (B16) 

d = a - 1  (B17) 

g = - c  (B18) 

h = - d  (B19) 

An example of this choice of indices is illustrated in Fig. 13c. Then the 
emission rule, (B l l )  and (B12), is simply 

~b~(x) = n~_2(x)( 1 - n~_ l(x)) (B20) 

Since the kicking of the photons is the same in this example as in the 
previous one, (B4) still holds, 

~',,(x + r~,,) = ~ , , ( x )  

By reexpressing (B7) more generally, we can write a local absorption rule 

n'o(x) = n,,(x) + ~b'(, + i)(x) ~ba + l(x) - ~,'~_ l(x) ~b_c~_ l)(x) (B21) 

or more elegantly 

n'o(x)=n,,(x)+P~+l(x,x+rO~+j)--P_o+l(x,x--rdo_l) (B22) 

Substituting in (B20) and (B4) into (B21) and after some manipulation of 
the indices, we have a single Boolean expression in terms of number 

Table III. L o n g - R a n g e  Interaction Sequence with Two Photons Emitted a t  a 
Single Site 

Labels no(x) zt(x) zr(x) na(x') gl(X') gr(X') 

Events 010010 0 0 000010 0 0 
Emit 010010 1 1 000010 1 0 
Kick 010010 1 0 000010 0 1 
Absorb 001010 0 0 000001 0 0 
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Table IV. Long-Range Interaction Sequence with T w o  Photons Emitted and 
Absorbed at Si te x '  in a Back- to -Back  Interaction 

Events n.(x) zt(x) zr(x) no(x') zl(x') zr(x') na(x") zt(x") Zr(Xt') 

Initial 010000 0 0 010010 0 0 000010 0 0 
Emit  010000 0 1 010010 1 1 000010 1 0 
Kick 010000 1 0 010010 1 1 000010 0 1 
Absorb 001000 0 0 001001 0 0 000001 0 0 

variables for a single long-range interaction step for partit ion Fr as 
follows: 

n'o(x) =no(x) 

+ na +2(x -I- rda+ 1)(1 -- n _ , ( x  + rd,+ l)) 17,,_ l(x)(1 - na(x)) 

- n _ , ( x - r ~ o _  t)(1 - n a _ 2 ( x -  rdo_ 1)) na(x)(1 - n~+ l(x)) 

Table I I I  gives the local site data for the x-axis partit ion of  a clockwise 
orbit. The particle na(x ) acts as a kind of spectator is this example, 
illustrating that two photons  can be emitted from a single site. It is also 
possible to have two photons  absorbed at a single site. Let us consider a 
back- to-back  interaction over three sites. Suppose there are particles at sites 
x = 0, x '  = ri, and x" = 2ri. Table IV gives the site data for these sites where 
there are two photons  emitted and absorbed at x '  in the middle location. 
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